
Real-tim e Shadin g:
Sampli ng Procedural Shaders

WolfgangHeidrich
TheUniversityof British Columbia

Abstract

In interactive or real-time applications, naturally the
complexity of tasks that can be performedon the fly
is limited. For thatreasonit is likely thatevenwith the
current rateof developmentin graphicshardware, the
morecomplex shaders will not be feasible in this kind
of application for sometime to come.

Onesolution to this problem seemsto be a precom-
putation approach,wheretheproceduralshader is eval-
uated(sampled), andthe resulting valuesarestored in
texture maps,which canthen be applied in interactive
rendering.A closerlook, however, revealsseveral tech-
nical difficulties with this approach.Thesewill bedis-
cussed in this section, andhints towards possiblesolu-
tionswill begiven.

1 Intr oduction and Problem State-
ment

In order to comeupwith anapproachfor samplingpro-
cedural shaders, we first have to determinewhich as-
pectsof the shading systemwe would like to alter in
theinteractive application.

For example, we canevaluate the shader for a num-
berof surfacelocationswith fixedillumination(all light
sourcepositionsandparameters arefixed),anda fixed
cameraposition. This is the modein which a normal
proceduralshading system would evaluate the shader
for a surface in any given frame. If the shader is ap-
plied to aparametricsurface

���������
	
, thenwecaneval-

uatethe shader at a number of discrete points
�������
	

,
andstoretheresulting color valuesin a texture map.

In aninteractiveapplication, however, this particular
exampleis of limited usesinceboththeviewer andthe
illumination is fixed. As a result the texture canonly
be usedfor exactly one frame, unlessthe material is
completely diffuse.In amoreinteresting scenario,only

theilluminationis fixed,but thecamerais freeto move
around in the scene. In this case, the shader needsto
beevaluatedfor many different referenceviewing posi-
tions,andduringrealtime rendering thetexture for any
given viewing direction can be interpolated from the
referenceimages. This four-dimensional datastructure
(2 dimensionsfor

�
and

�
, and 2 dimensions for the

cameraposition) is called a light field, and is briefly
describedin Section4.

If wewantto goonestepfurther, andkeep theillumi-
nationflexible aswell, weendupwith aevenhigherdi-
mensional datastructure. Thereareseveralwaysto do
this,but oneof themorepromisingis probably theuse
of aspace-variantBRDF, i.e. a reflection modelwhose
parameters canchange over a surface. This yields an
approachwith asix-dimensional datastructurethatwill
beoutlinedin Section 5.

No matterwhich of theseapproaches is to be taken,
thereare someissues that have to be resolved for all
of them. Oneof themis the choiceof an appropriate
resolution for the sampling process. The bestresolu-
tion dependson many different factors, someof which
depend onthesystem(i.e. theamountof memoryavail-
able,or therangeof viewing distancesunder which the
shaded objectwill beseen),andsomeof which depend
ontheshader (i.e. theamountof detail generatedby the
shader).

In the caseof a 2D texture with fixed cameraand
lighting, a sampleresolution can still be chosen rela-
tively easily, for example, by letting the user make a
decision. With complex view-dependenteffects this is
muchharder becauseit is hard to determine appropri-
ateresolutionsfor sampling specular highlights whose
sharpnessmay vary over the surface. An automatic
methodfor estimating the resolution would be highly
desirable.

Anotherproblemis thesheer numberof samplesthat
we may have to acquire. For example, to samplea
shader as a space variant BRDF with a resolution of

�
�
�����
�
�
for thesurfaceparameters

�
and

�
, aswell as�
���

samplesfor boththelight direction andtheviewing
direction requiresover 68 bill ion samples,which is un-
feasible both in termsof memoryconsumptionandthe
time required to acquire these samples. On the other
hand, it is to beexpectedthattheshader function is rel-
atively smooth, with thehigh-frequency detail localized
in certain combinationsof viewing andlight directions
(specular highlights,for example). Thus,a hierarchical
sampling schemeis desirablewhich allows usto refine
the sampling in areas that are more complex without
havingto doahigh-density sampling in all areas. At the
sametimethehierarchical methodshould makesurewe
do not missout on any important features.Suchanap-
proach is describedin thenext section.

2 Area Sampling of Procedural
Shader s

In this section we introduce the concept of area sam-
pling aproceduralshaderusing aacertainkind of arith-
metic that replacesthe standard floating point arith-
metic. This affine arithmetic allows us to evaluate a
shaderoverawholearea,yieldinganupper anda lower
bound for all the values that the shader takes on over
this area.Thisbound canthenbeusedhierarchically to
refinethesampling in areas in which theupper andthe
lowerbound arefarapart(i.e. areaswith alot of detail).
Thefull details of themethod canbefound in [10].

We will discuss the general approach in terms of
sampling a 2D texture by evaluating a shader with
a fixed cameraposition and illumination. The same
methods can however be applied to adaptively adjust
thesampling ratesfor cameraandlight position.

2.1 Affine Arithmetic

Affine arithmetic (AA), first introduced in [4], is an
extension of interval arithmetic [16]. It hasbeen suc-
cessfully applied to severalproblemsfor which interval
arithmetic hadbeenusedbefore [17, 20, 21]. This in-
cludes reliable intersection testsof rays with implicit
surfaces, and recursive enumerations of implicit sur-
facesin quad-treelike structures[5, 6].

Like interval arithmetic,AA canbe usedto manip-
ulate imprecisevalues,and to evaluate functions over
intervals. It is alsopossible to keeptrackof truncation
andround-off errors. In contrastto interval arithmetic,

AA also maintains dependencies between the sources
of error, and thus manages to compute significantly
tighter error bounds.Detailed comparisonsbetweenin-
terval arithmetic andaffine arithmetic canbe found in
[4], [5], and[6].

Affine arithmetic operateson quantities known as
affine forms, given aspolynomialsof degreeone in a
setof noisesymbols ��� .������������! � "�#� � � � ��$%$%$����'& � &
Thecoefficients

� � areknown realvalues, while theval-
uesof the noisesymbols areunknown, but limited to
the interval (*) �,+.-0/ � /21

. Thus, if all noisesymbols
canindependently varybetween

-3/
and

/
, therangeof

possible valuesof anaffine form
��

is

+ ��'1��4+ � � -65 � � � ��5�1 � 57�
&8
�:9 �;

� � ;=<
Computingwith affine forms is a matterof replac-

ing eachelementary operation > � � 	 on real numbers
with an analogous operation >@? � � � <%<%< � � &) � > �A�� 	
on affine forms.

If > is itself an affine function of its arguments,we
canapply normalpolynomialarithmetic to find thecor-
respondingoperation > ? . For examplewe get��B� �C � � � � � C � 	 � � � � C 	 � ��$%$%$
� � � & � C & 	 � &��B�EDF� � �G���HD 	 ���I � ���$%$%$����G& � &D ���� D!� � �HD!� � ��$%$%$��HD!� & � &
for affine forms

�� �
�C andrealvalues
D

.

3 Non-Affine Operations

If > is not anaffine operation, thecorresponding func-
tion > ? � � � <%<%< � � & 	 cannot be exactly representedasa
linear polynomial in the ��� . In this caseit is necessary
to find anaffine function >KJ � � � <%<%< � � & 	 �ML � �NL � �$%$%$O�PLA& � & approximating > ? � � � <%<%< � � & 	 aswell aspos-
sibleover (& . An additional new noisesymbol ��Q has
to beaddedto representtheerrorintroduced by thisap-
proximation. This yields the following affine form for
theoperation

LR� > � � 	 :�LR� > J � � � <%<%< � � & 	 �ML � �#L � ��$%$%$��#L & � & �#L Q��SQ �
with TVUWYX / � <%<%< ��Z\[. The coefficient

L Q of the new
noisesymbol hasto be an upper bound for the error
introducedby theapproximationof > ? with >�J :L QR]E^P_�` X ; > ? � � � <%<%< � � & 	 - > J � � � <%<%< � � & 	 ;)K��� W ([<

4 – 2

For example it turns out (see[4] for details) that a
gooda approximationfor themultiplication of two affine
forms

��
and

�C is

�LR�b� � C � � � � � C � C � � 	 � �B$%$%$c� � � � C & � C � � & 	 � & � �G� �dQ �
with

� �fe &�:9 ; � � ; and
� �fe &�:9 ; C � ; . In general,the

bestapproximation >KJ of > ? minimizes theChebyshev
errorbetween thetwo functions.

Thegenerationof affine approximationsfor mostof
the functions in the standard math library is relatively
straightforward.For aunivariatefunction > � � 	 , theiso-
surfacesof > ? � � � <%<%< � � & 	 � > � � � �g� � �h$%$%$i�g� & � & 	
arehyperplanesof (& thatareperpendicularto thevec-
tor

� � � <%<%< � � & 	 . Sincethe iso-surfacesof every affine
function >jJ � � � <%<%< � � & 	 �kLA�l�mL@ � n�f$%$%$o�bLp& � & are
alsohyperplanesof this space, it is clear that the iso-
surfacesof the bestaffine approximation >�J of > ? are
alsoperpendicular to

� � � <%<%< � � & 	 . Thus,we have

> J � � � <%<%< � � & 	 �qD ��r�tsu�qD � � � �t� � �B$%$%$c�t� & � & 	 �ts
for someconstants

D
and

s
. As aconsequence,themin-

imumof ^�_�`Kvxwxy�z ; >{J - > ? ; is obtainedby minimizing^P_�` vxwxy�z ; > �A�� 	 -0D ��n-|s ; � ^P_�`
} y�~ J%� ��� ; > � � 	 -0DI��-|s ; �
where

+ � �d� 1
is theinterval

+ ��j1
. Thus,approximating > ?

hasbeenreducedto findingalinear Chebyshev approx-
imation for a univariatefunction, which is a well un-
derstood problem [3]. For a more detaile discussion,
see[10].

Mostmultivariatefunctionscanhandledby reducing
themto a composition of univariatefunctions. For ex-
ample,the maximumof two numberscanberewritten
as ^P_�` � � � C 	 � ^P_�` � � �F- C 	 � C , with ^P_�` � � L) �^P_�` � L �S�o	 . For theunivariatefunction ^P_�` � � L 	 wecan
usetheabove scheme.

3.1 Application to Procedural Shader s

In order to apply AA to procedural shaders, it is nec-
essary to investigatewhich additional featuresarepro-
vided by shading languages in comparison to stan-
dardmath libraries. In the foll owing, we will restrict
ourselvesto the functionality of the RenderMan shad-
ing language[9, 18, 22], which is generally agreed to
be one of the most flexible languagesfor procedural
shaders. Sinceits featuresarea superset of mostother
shading languages(for example[2] and [15]), the de-
scribedconceptsapply to theseotherlanguagesaswell.

Shadinglanguagesusually introduce a set of spe-
cific datatypesandfunctionsexceeding thefunctional-
ity of generalpurposelanguagesandlibraries. Most of
theseadditional functionscaneasily be approximated
by affineformsusingtechniquessimilarto theonesout-
lined in theprevioussection. Examplesfor this kind of
domainspecific functions are continuousand discon-
tinuous transitions betweentwo values, like stepfunc-
tions,clamping of avalueto aninterval,or smoothHer-
mite interpolation between two values.

The more complicated features include splines,
pseudo-random noise, and derivatives of expressions.
For an in-depth discussion of these functions we refer
thereader to theoriginal paper [10].

New datatypes in theRenderMan shading language
arepoints andcolor values,both simply being vectors
of scalar values. Affine approximations of the typical
operationson thesedatatypes(sum,difference,scalar-
, dot- and crossproduct, as well as the vector norm)
caneasily beimplemented basedon theprimitive oper-
ationson affine forms.

Every shader in theRenderManshading languageis
supplied with a setof explicit, shader specific parame-
tersthat may be linearly interpolated over the surface,
aswell asfixedsetof implicit parameters(global vari-
ables). The implicit parameters includethe location of
thesamplepoint, thenormal andtangentsin this point,
aswell asvectorspointing towardstheeyeandthelight
sources.For parametricsurfaces,thesevaluesarefunc-
tions of the surface parameters

�
and

�
, aswell asthe

sizeof thesample region in theparameter domain: � �
and � � .

For parametric surfaces including all geometric
primitives defined by the RenderManstandard, the
explicit and implicit shader parameterscan therefore
becomputed by evaluating thecorresponding function
over the affine forms for

�
,
�
, � � , and � � . The affine

forms of thesefour values have to be computed from
thesampleregion in parameter space.For many appli-
cations, � � and � � will actually berealvaluesonwhich
the affine forms of

�
and

�
depend:

�� � � � � � � $ �
and

�� � � � � � � $ � � .
With this information,we canset up a hierarchical

sampling schemeasfollows. Theshader is first evalu-
atedover thewholeparameterdomain(

� � � < ��� � < �t$� , � � � < ��� � < �|$ � �). If theresulting upper andlower
boundof theshader aretoodifferent,theparameterdo-
mainis hierarchically subdivided into four regions,and
areasamples for theseregions arecomputed. The re-

4 – 3

cursion stopswhen the differencebetween upper and
lower bound (error) is below a certain limit, or if the
maximumsubdivision level is reached. Resultsof this
approachtogetherwith an error plot aregiven in Fig-
ure1.

3.2 Anal ysis

In our description we usesaffine arithmetic to obtain
conservative bounds for shader valuesover a param-
eter range. In principle, we could also useany other
range analysismethodfor this purpose.It is, however,
important that themethodgeneratestight, conservative
boundsfor theshader. Conservative boundsareimpor-
tant to not miss any small detail, while tight bounds
reduce the number of subdivisions, andthereforesave
bothcomputationtime andmemory.

We have performed teststo compareinterval arith-
meticto affine arithmetic for thespecific application of
proceduralshaders. Our results show that the bounds
producedby interval arithmeticaresignificantly wider
than the bounds producedby affine arithmetic. Fig-
ure2 shows thewoodshader sampledata resolution of�
/p���R�
/p�

. Theerror plotsshow thatinterval arithmetic
yieldserrorsup to

� �o�
in areaswhereaffinearithmetic

produceserrors below
/A���
�
�

. As a consequence, the
texturesgeneratedfrom thisdataby assigningthemean
values of the computed range to eachpixel, reveal se-
vereartifactsin thecaseof interval arithmetic.

Thecorresponding error histogramin Figure3 shows
that, while the most of the per-pixel errors for affine
arithmetic arearelessthan3%, mostof the errors for
interval arithmetic are in the rangeof 5%-10%,anda
significantnumber is evenhigher thanthis (up to 50%).

Theseresults arenot surprising. All theexpressions
computedby a procedural shader dependon four input
parameters:

�
,
�
, � � , and � � . Affine arithmetic keeps

trackof mostof thesesubtle dependencies,while inter-
val arithmeticignoresthemcompletely. Themorecom-
plicatedfunctionsget,themoredependenciesbetween
thesourcesof error exist, andthebigger theadvantage
of AA. Theseresults areconsistentwith prior studies
publishedin [4], [5], and[6].

Theboundsof both affineandintervalarithmeticcan
befurtherimprovedby finding optimal approximations
for larger blocks of code, instead of just library func-
tions. This process,however, requireshumaninterven-
tion andcannot bedoneautomatically.

This leaves us with the methodpresented here as

the only practical choice, as long as conservative er-
ror boundsarerequired. Otherapplications, for which
an estimateof the bounds is sufficient, could alsouse
Monte Carlo sampling. In this caseit is interesting to
analyzethenumberof MonteCarlosamplesandthere-
sulting quality of the estimate that canbe obtained in
the sametime as a single areasampleusing AA. Ta-
ble 1 shows a comparisonof thesenumbers in termsof
floating point operations (FLOPS) andexecution time
(on a 100MHz R4000Indigo) for the various shaders
usedthroughout this paper.

For more complicated shaders the relative perfor-
manceof AA decreases,since moreerrorvariablesare
introduceddue to the increasedamountof non-affine
operations. The table shows that, depending on the
shader, 5 to 10 point samples areasexpensive asa sin-
gle AA areasample. To seewhat this meansfor the
quality of thebounds,consider thescreen shader with a
density of

� < � . Thedensity of
� < � meansthat75percent

of the shader will be opaque,while 25 percent will be
translucent. If we take 7 point samples of this shader,
which is aboutasexpensive asa singleAA sample, the
probability that all samplescomputethe sameopacity
is
� <=� ���I� � < �
�
����/p� <�� percent. Evenwith 10samples

theprobability is still
� < � percent.

For theexample of usingareasamplesasa subdivi-
sioncriterion in hierarchical radiosity, thismeansthata
wall coveredwith thescreenshaderwouldhaveaprob-
ability of 13.4(or 5.6) percent of not being subdivided
at all. Thesameprobability appliesto each level in the
subdivisionhierarchy independently. Thesenumbers
indicate that AA is superior to point sampling even if
only coarse estimatesof theerror bounds aredesired.

4 Light Fields

Let us now consider how the method canbe usedin a
scenario with a varying cameralocation, but fixedillu -
mination. This is somewhatspeculative,becauseit has
never actually beentried. It is therefore to beexpected
that in practical implementationssomenew issueswill
arisethatwill have to beresolvedin future research.

Beforeweoutlineanapproachfor adaptively acquir-
ing light fields from procedural shaders, we will first
review theconceptof a light field itself.

4 – 4

Figure 1: Several examples of RenderManshaderssamples with affine arithmetic. Left: per-pixel error bounds,
center: generatedtexture, right: texture applied to 3D geometry.

Figure 2: The wood shader sampled at a resolution of
�
/p�h�H�
/p�

. From left to right: error plot using interval
arithmetic,resulting texture,errorplot using affine arithmetic,resulting texture.

4 – 5

0

10000

20000

30000

40000

50000

60000

0 0.05 0.1 0.15 0.2 0.250.3 0.35 0.4 0.45 0.5

pi

xe
ls�

error

"interval arithmetic"

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

0 0.05 0.1 0.15 0.2 0.250.3 0.35 0.4 0.45 0.5

pi

xe
ls�

error

"affine arithmetic"

Figure3: Error histogramsfor thewoodshader for interval arithmetic(left) andaffine arithmetic (right).

Shader FLOPS(ps) FLOPS(aa) ratio Time(ps) Time (aa) ratio
screen 24 214 1:8.92 4.57 33.48 1:7.32
wood 803 6738 1:8.39 8.34 86.53 1:10.38
marble 4386 28812 1:6.57 9.46 88.52 1:9.36
bumpmap 59 487 1:8.25 3.76 20.43 1:5.43
eroded 2995 26984 1:9.01 18.85 193.33 1:10.27

Table1: FLOPSpersampleandtimingsfor 4096samples, for stochastic point sampling (ps)andAA areasampling
(aa).

4.1 Definition

A light field[13] is a5-dimensional function describing
the radiance at every point in spacein eachdirection.
It is closely relatedto theplenoptic function introduced
by Adelson[1], which in addition to location andori-
entation also describes the wavelength dependency of
light.

In thecaseof a scenethat is only to beviewedfrom
outside a convex hull, it is sufficient to know what ra-
diance leaves eachpoint on the surface of this con-
vex hull in any given direction. Sincethe spaceout-
side the convex is assumed to be empty, andradiance
doesnot change along a ray in empty space,the di-
mensionality of the light field canbe reduced by one,
if an appropriate parameterization is found. The so-
called two-plane parameterization fulfills this require-
ment.It representsa ray via its intersection points with
two parallel planes. Several of thesepairs of planes
(alsocalledslabs) arerequired to representa complete
hull of the object. Sinceeachof thesepoints is char-
acterizedby two parametersin theplane,this results in
a 4-dimensional function that canbe densely sampled
through a regulargrid on eachplane(seeFigure4).

Oneuseful property of the two-planeparameteriza-

(
�
u,v) plane

(
�
s,t) plane

Figure4: A light field is a 2-dimensional arrayof im-
agestaken from a regular grid of eye points on the���o����	

-planethrough a windowon the
���I����	

-plane.The
two planes areparallel, andthewindow is thesamefor
all eye points.

tion is thatall therayspassing throughasinglepoint on
the

���o����	
-plane form a perspective imageof the scene,

4 – 6

with the
���o����	

point being the center of projection.
Thus,a light field canbe considered a 2-dimensional
array of perspective projections with eye points regu-
larly spacedonthe

���@���S	
-plane.Otherpropertiesof this

parameterization havebeen discussedin detailby Guet
al.[8].

Sincewe assume that the samplingis dense, the ra-
diance alongan arbitrary ray passing through the two
planescanbeinterpolatedfrom theknown radianceval-
uesin nearbygrid points. Eachsuchraypasses through
oneof thegrid cells on the

���o����	
-planeandoneon the���I����	

-plane. Theseareboundedby four grid pointson
the respective plane, andthe radiance from any of the���I����	

-points to any of the
���o����	

-points is storedin the
datastructure.Thismakesfor atotalof 16radianceval-
ues,from which theradiancealong theraycanbeinter-
polatedquadri-linearly. As shownin by Gortleretal[7]
andSloanet al.[19], this algorithm canbeconsiderably
spedup by theuseof texture mappinghardware.Sloan
etal.[19] alsoproposeageneralizedversion of thetwo-
plane parameterization, in which theeye points canbe
distributed unevenly on the

���o���S	
-plane,while thesam-

pleson the
���I���
	

-planeremainon a regular grid.
A relateddatastructure is thesurfacelight field [14,

23], in which two of the four parameters of the light
field areattached to the surfaceparameters. That is,

�
and

�
correspond to theparametersof aparametric sur-

face,while
�

and
�

specify the viewing direction. The
details of thedifferentvariantsof surfacelight fieldsare
beyond thescopeof thisdocument, andwerefer thein-
terestedreader to theoriginal papers [14, 23].

4.2 Sampling of Light Fields

Thesampling methodfrom Section3.1canbeadapted
to theadaptivesampling of light fieldsfrom procedural
shaders.In addition to computing boundsfor theshader
over a large parameterdomainthat we thenadaptively
refine,we now alsocompute boundsover a continuum
of camera positions. For example, we canstart with a
large bounding box specifying all possible camerapo-
sitions,andthenadaptively refineit. Or, in thecaseof
a two-plane parameterized light field, we could define
therangeof camerapositionsasarectangular region on
thecameraplane.

It is not clear at this point how the acquired hier-
archical light field can be useddirectly for rendering
in interactive applications. However, a regularly sam-
pledtwo-planeparameterizedlight field is easyto gen-

eratefrom the hierarchical oneby interpolation. This
approachdoesnot resolve the relatively large memory
requirementsof light fields,but it should dramatically
reduce theacquisition time.

5 Space Variant BRDFs

The situation getseven more complex when we also
want to allow for changes in the illumination. The
most reasonableapproach for dealing with this situa-
tion seemsto bestoring a reflection model(BRDF) for
everypoint ontheobject. Thatis, insteadof precomput-
ing theshaderfor all possible lighting situations(which
would requireevenmorespace),weonly determinethe
BRDF at every surface location (i.e. a space-variant
BRDF by consideringthe effect of a single directional
light source which canbe pointing at the object from
any direction.

As mentioned in the introduction, a space-variant
BRDFis asix-dimensional function, andkeepingasix-
dimensional table is prohibitive in size. Therefore, a
different representation has to be found. Again, we
should beableto useAAto generatearelatively sparse,
adaptivesampling of theshader, which is, however, not
well suited for interactive rendering.

On theother hand, the graphics hardware is becom-
ing moreandmoreflexible, so that it is now possible
to render certain simple reflection models where the
parameters of the modelcanbe varied acrossthe sur-
face[11]. This yields a limited form of space-variant
BRDF, wherethe BRDF actually conforms to a single
analytical reflection model, but its parameters can be
texture-mappedandcantherefore vary acrossthe sur-
face.

Unfortunately, the reflection models considered
in [11] arenot yet complex enough to capture all the
effects that a procedural shader may produce. Other
modelsthat provide a general purpose basis for arbi-
traryeffectsdoexist [12], but it is currently nopossible
to render themin hardware with space-variant parame-
ters.

Oncewe have found a reflectionmodel that is ex-
pressive enough for our purposesandcanbe rendered
in hardware,westill haveto determineits parametersin
every point of theobject from thehierarchical samples
acquired with the adaptive sampling approach. This,
again,is anopen research problem.

4 – 7

6 Conc lusio n

In this section we have raised someissuesregarding
the sampling of complex procedural shaders asa pre-
processingstepfor interactive rendering.Wewereable
to describe a hierarchical sampling schemethat adap-
tively determines an appropriate sampling resolution
for different parts of the shader. The application of
this method to determining view-dependent informa-
tion from a shader in sucha way that it is efficient to
usein interactive applications is anopenproblem. We
wereableto identify someissues arising with this sub-
ject, and hinted towardssomepossible solutions, but
moreresearch will have to be done for a completeso-
lution.

Reference s

[1] E.H. AdelsonandJ.R.Bergen.ComputationalModels
of Visual Processing, chapter 1 (The PlenopticFunc-
tion and the Elements of Early Vision). MIT Press,
Cambridge,MA, 1991.

[2] Alias/Wavefront. OpenAlias Manual, 1996.

[3] Elliot W. Cheney. Introduction to Approximation The-
ory. Internationalseriesin pureandappliedmathemat-
ics.McGraw-Hill, 1966.

[4] JoãoL. D. CombaandJorge Stolfi. Affine arithmetic
andits applicationsto computergraphics. In Anaisdo
VII Sibgrapi, pages9–18, 1993.

[5] Luiz Henrique Figueiredo. Surfaceintersectionusing
affine arithmetic. In Graphics Interface ’96, pages
168–175, 1996.

[6] Luiz Henrique FigueiredoandJorge Stolfi. Adaptive
enumerationof implicit surfaceswith affinearithmetic.
ComputerGraphics Forum, 15(5):287–296, 1996.

[7] StevenJ. Gortler, RadekGrzeszczuk, RichardSzelin-
ski, andMichaelF. Cohen. TheLumigraph. In Com-
puter Graphics (SIGGRAPH ’96 Proceedings), pages
43–54,August 1996.

[8] Xianfeng Gu,StevenJ.Gortler, andMichaelF. Cohen.
Polyhedral geometry andthe two-plane parameteriza-
tion. In RenderingTechniques ’97 (Proceedings of
EurographicsRenderingWorkshop), pages1–12, June
1997.

[9] Pat Hanrahan andJim Lawson. A languagefor shad-
ing and lighting calculations. In ComputerGraphics
(SIGGRAPH ’90 Proceedings), pages289–298, Au-
gust1990.

[10] WolfgangHeidrich,Philipp Slusallek,andHans-Peter
Seidel.Samplingproceduralshadersusingaffinearith-
metic. ACM Transactions on Graphics, pages158–
176,1998.

[11] Jan Kautz and Hans-PeterSeidel. Towards Inter-
active Bump Mappingwith Anisotropic Shift-Variant
BRDFs. In Eurographics/SIGGRAPH Workshopon
GraphicsHardware2000, pages51–58, August2000.

[12] EricP. F. Lafortune,Sing-ChoongFoo,KennethE.Tor-
rance,andDonald P. Greenberg. Non-linear approxi-
mationof reflectancefunctions.In Computer Graphics
(SIGGRAPH ’97 Proceedings), pages 117–126, Au-
gust1997.

[13] Marc Levoy andPat Hanrahan. Light field rendering.
In ComputerGraphics (SIGGRAPH ’96 Proceedings),
pages31–42, August1996.

[14] Gavin Miller, Steven Rubin, and Dulce Ponceleon.
Lazydecompressionof surfacelight fieldsfor precom-
putedglobalillumination. In RenderingTechniques’98
(Proceedings of Eurographics Rendering Workshop),
pages281–292,March1998.

[15] Steven Molnar, JohnEyles, and JohnPoulton. Pix-
elFlow: High-speedrendering using imagecomposi-
tion. In ComputerGraphics(SIGGRAPH’92 Proceed-
ings), pages231–240, July1992.

[16] RamonE. Moore. Interval Analysis. PrenticeHall,
Englewood Clif fs, New Jersey, 1966.

[17] F. Kenton Musgrave, Craig E. Kolb, and Robert S.
Mace. The synthesisandrendering of eroded fractal
terrains.In ComputerGraphics(SIGGRAPH’89 Pro-
ceedings), pages41–50,July1989.

[18] Pixar. TheRenderManInterface. Pixar, SanRafael,
CA, Sep1989.

[19] Peter-Pike Sloan, Michael F. Cohen, and Steven J.
Gortler. Time critical Lumigraphrendering. In Sym-
posiumon Interactive3D Graphics, 1997.

[20] JohnM. Snyder. Generative Modelingfor Computer
GraphicsandCAD: Symbolic Shape DesignUsingIn-
terval Analysis. Academic Press,1992.

[21] JohnM. Snyder. Interval analysisfor computergraph-
ics. In ComputerGraphics(SIGGRAPH ’92 Proceed-
ings), pages121–130, July1992.

[22] Steve Upstill. TheRenderMan Companion. Addison
Wesley, 1990.

[23] D. Wood, D. Azuma, K. Aldinger, B. Curless,
T. Duchamp,D. Salesin,andW. Stuetzle.SurfaceLight
Fields for 3D Photography. In Proceedings of SIG-
GRAPH2000, pages287–296, July2000.

4 – 8

